Ive been looking into the math behind one of the most powerful math formulas around : NURBS, or non-uniform rational-basis or bezier splines. They have an almost majestic power to TDs and riggers, along with the allusive animated pivot. Once controlled though they offer almost limitless control of a curve using a combination of the rationality of b-splines i.e the weight. And the non-uniformality of all splines i.e the spacing.

I can understand the math, but for the life of me couldnt understand the non-uniformality – its hard to actually visualize like quaternions in a way. But with my code, I started to notice something odd – i think ive been writing the ‘basis’ function with out me even knowing. In working out the percentages in which ‘t’ [0,1] lived in, i had essentially made the knot vectors nessesary for a b-spline. So basically what this means is in theory (its all in my notes atm) that i can write a b-spline basis function that neatly ties into a polynormial function. And therefore in theory Nurbs. Working out the weights its the tricky part.

The amazing thing with understanding the power polynormial function is that your curve can reside in any degree, i.e it can be cubic, quadratic on the fly. Based on the number of knot vectors – this is important as it the larger the degree the more complex the working out is. So if i have a curve of only 3 points, my degree can be 2, and so on. At the minute, im not going to expose the non-uniformality (its just exposing an array of knot vectors), so im just making an URB spline lol.

### Like this:

Like Loading...

*Related*